跳转至

人工智能导论

Bias vs. Variance

2022年4月23日,2023年10月12日。

Mean squared error = variance + bias squared.

\(y\) is the true value, and \(\hat{y}\) is a random variable or a list of variables.

\[ \begin{split} \overline{(\hat y - y)^2} &= \overline{(\hat y)^2 + y^2 - 2 \hat y y} \\ &= \overline{(\hat y)^2} + {y^2} - 2 \overline{\hat y} y \\ &= \overline{(\hat y)^2} - \overline{\hat y}^2 + \qty(\overline{\hat y}^2 + y^2 - 2 \overline{\hat y} y) \\ &= \overline{(\hat y - \overline{\hat y})^2} + \qty(\overline{\hat y} - y)^2. \\ \end{split} \]

Dual Formulation

Lagrange Multiplier and Dual Formulation · SVM (gitbooks.io)

评论